If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-160x+168=0
a = 16; b = -160; c = +168;
Δ = b2-4ac
Δ = -1602-4·16·168
Δ = 14848
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{14848}=\sqrt{256*58}=\sqrt{256}*\sqrt{58}=16\sqrt{58}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-160)-16\sqrt{58}}{2*16}=\frac{160-16\sqrt{58}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-160)+16\sqrt{58}}{2*16}=\frac{160+16\sqrt{58}}{32} $
| 2x+24=24+15 | | -9x^2-36x-40=-6x^2-21x-22 | | |2x−1|−5=−2 | | -6k-6=-18 | | 12(5/12)=x | | -4x^2+72x-153=-2x^2+48x-81 | | 11-3a=6-2a | | 6p–16p–-2=-8 | | -6x^2-29x-26=-4x^2-17x-16 | | 5(2x+12)=4(3x+10) | | 12.63=-1.6v-15.85 | | 2+3/2=-6x | | 6x^2-28x+44=4x^2-14x+24 | | x-(2x+1)=7 | | (a+3)(a-5)(2a+1)=0 | | 3^x=0.4 | | x–12=3x | | -12v+12.63=-13.6v–15.85 | | 30(x-1)=-6(5*x)+24x | | 3t-t-2=7 | | 6+2m=3.5m | | 19-(x+7)=3x-4 | | (7x-6)=1/(x^2-4x+5) | | 14b-9b+14=22+5b-8 | | -11g+14g+8=-13 | | 8(v+1)-2v=3(2v+4)-16 | | 24/x+2=8/7 | | 18w–15=15+20w | | 2(2.5x+6)-3=16 | | 6/x+7=2/3 | | 6x^2-8x-18=3x^2-x-12 | | 8+2b=6(b+2) |